Evaluating Potential Improvements of Collaborative Filtering with Opinion Mining

نویسندگان

  • Manuela Angioni
  • Maria Laura Clemente
  • Franco Tuveri
چکیده

An integration of an Opinion Mining approach with a Collaborative Filtering algorithm has been applied to the Yelp dataset to improve the predictions through the information provided by the user-generated textual reviews. The research, still in progress, based the Opinion Mining approach on the syntactic analysis of textual reviews and on a beginning polarity evaluation of the sentences. The predictions produced in this way was blended with the predictions coming from a Biased Matrix Factorization algorithm obtaining interesting results in terms of Root Mean Squared Error (RMSE), with potential enhancements. We intend to improve these results in a further phase of activity by including in the Opinion Mining approach the semantic disambiguation and by using better criteria of evaluation of the reviews taking into account a set of 12 business aspects. The Opinion Mining approach will be evaluated comparing the output in terms of predictions with the values manually assigned by a small group of people to a sample of the same reviews.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

State-of-the-Art Review on Opinion Mining from Online Customers’ Feedback

Dealing with the ever-growing information overload in the Internet, Recommender Systems are widely used online to suggest potential customers item they may like or find useful. Collaborative Filtering is the most popular techniques for Recommender Systems which collects opinions from customers in the form of ratings on items, services or service providers. In addition to the customer rating abo...

متن کامل

Collaborative Recommendation System Using Dynamic Content based Filtering, Association Rule Mining and Opinion Mining

This paper proposes a recommendation system (RS) that generates items recommendations to users with the help of dynamic content based filtering, collaborative filtering, association rules and opinion mining. This RS uses dynamic content based filtering for creating and continuously monitoring the changing shopping behaviour of users. The proposed approach finds other like-minded people with the...

متن کامل

Enhancing Recommender System for Matrimonial Sites using Collaborative Filtering Method

Recommender Systems helps users to find items of interest from a large number of available items. Collaborative Filtering is the commonly used technology for recommender systems. The role of recommender system in matrimonial sites is profile matching based on the preferences given by the users. The users of matrimonial sites have a problem of overloaded choices of partners. This is because the ...

متن کامل

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015